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Stochastic models for tumoral growth
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Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy
universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor
border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition
for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted
for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are
reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and
(2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and
are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the
response of the tumor to an unfavorable perturbation during growth.
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In nature, one can find a huge number of systems that
develop a rough interface in the process of growing. Many of
them have been adequately understood by the use of some
tools from fractal geometry, such as scaling analysis, as well
as through modeling with stochastic partial differential equa-
tions (SPDEs) and discrete models [1]. While these concepts
do not constitute an exclusive theoretical framework for sur-
faces in the physical world, they can be applied to gain a
deeper understanding of many processes in biology [2]. Due
to the many possible important applications in medicine, tu-
mor growth constitutes one of the most interesting subjects
of study to which scaling analysis can be applied. Actually,
very important research on tumor growth has been recently
carried out. Strong empirical evidence has been found that a
broad class of tumors belongs to the same universality class:
the molecular beam epitaxy (MBE) universality class [3,4].
MBE dynamics is characterized by a number of features that
include a linear growth rate, the constraint of growth activity
to the outer border of the tumor, and surface diffusion at the
growing edge; all of them have been observed experimen-
tally. Surface diffusion has been identified as an optimal
mechanism favoring tumor growth. The host tissue exerts
pressure on tumors, which opposes their growth, but surface
diffusion drives the cells to the concavities of the interface
keeping this pressure to a minimum. These findings sug-
gested studying the effect of the immune response on the
tumor, and it has been established that an enhancement of the
immune response increases the pressure on the tumor sur-
face, and therefore limits its development [5]. A very impor-
tant consequence of this fact is its possible application to
improve cancer therapy, something that has been already ex-
ploited with positive results [6]. All these achievements un-
derline the fundamental importance of understanding the
physics of tumor growth.

Before introducing any model, it is of fundamental impor-
tance to point out that the application of a physical model to
a complex biological process implies a great simplification
of many of its features. The movement of the cells is actually
much more complex than that simply described by diffu-
sion—it is affected by chemotaxis and haptotaxis. The dy-
namics of tumor-host interactions is determined by many
complex cellular and extracellular processes, which include

1539-3755/2006/73(2)/020902(4)/$23.00

020902-1

PACS number(s): 87.10.+e, 68.35.Fx, 87.19.—j

normal epithelial and mesenchymal cells as well as the ex-
tracellular matrix in addition to the immune response. This
interaction is very complex and highly variable. Normal cells
adjacent to the tumor are often induced to promote tumor
growth by releasing proteolytic enzymes to break down the
extracellular matrix or by releasing growth factors that en-
hance tumor proliferation. In addition, it appears that tumor
cells may under some circumstances transform into mesen-
chymal cells producing new populations of relatively normal
appearing cells that support tumor growth. Tumors are exten-
sively infiltrated by immune cells that may constitute as
much as one third of its volume. Both the tumor phenotype
and the tumor environment are very heterogeneous. The
former is the result of accumulating random mutations, vari-
able environmental selection forces, and perhaps restriction
of proliferate capacity in nonstem cell components of the
tumor. In addition, the tumor environment is extremely het-
erogeneous primarily due to disordered angiogenesis and
blood flow. These facts underline the huge complexity of the
problem, and remind us that the equations appearing below
do not constitute a fundamental description of tumor growth,
but a statistical approach to some of its properties.

The continuum equation that describes the MBE univer-
sality class (also known as the Mullins-Herring equation [7])
is the following SPDE:

dh=-KV*%h+F+ 5(x,1), (1)

where h is the interface height, K is the surface dif-
fusion coefficient, and #(x,7) is a Gaussian noise with
zero mean and correlations given by (n(x,r)n(x’,t'))
=D&(x—x")8(t—1t"). The term F has the dimensions of a ve-
locity, and in this case should be interpreted as the product of
the mean cell radius and the cell division rate. The critical
exponents can be extracted from this equation simply by
power counting. If we ignore for a moment the velocity F,
and we perform the transformations x— bx, t— b’t, and h
—b%h in the one-dimensional case, we see that the only
values of z and « that yield scale invariance are z=4 and
a=3/2. Since in this case > 1, the system is super rough,
and it is characterized by the set of critical exponents: «
=3/2, ay,.=1, z=4, B=3/8, and B =1/8 [8], which were
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found to be compatible with those measured in experiments
on tumor growth [3,4]. Another nice feature of the Mullins-
Herring equation is its simplicity: Since it is linear, it can be
solved exactly by means of a Fourier transformation. Other
properties of this equation, however, make it not so suitable
for describing tumor growth. It describes the growth of a
surface from a planar substrate of fixed size, while actual
tumors show radial growth with their size continuously in-
creasing in time. It is thus important to derive a SPDE able to
describe MBE physics with the correct geometry and spa-
tiotemporal properties of tumor growth.

In order to get the correct theoretical description of tu-
moral growth we will borrow some elements from differen-
tial geometry. On the other hand, these geometrical concepts
are common in the formulation of stochastic growth equa-
tions in reparametrization invariance form [9]. The equation
of growth of a general Riemannian surface reads

a,7(s,1) = i(s, ) T[7(s,0)] + D(s,7), 2)

where the d+1 dimensional surface vector 7(s,?)
={r,(s,1) ‘Z;;'l runs over the surface as s={si}§1=1 varies in a
parameter space (in the following, latin indices vary from 1
to d and greek indices from 1 to d+1). In this equation 7
stands for the unitary vector normal at the surface at 7, I’

contains a deterministic growth mechanism that causes
growth along the normal 7 to the surface, and ® is a random
force acting on the surface. In our case the deterministic part
should include a term modeling cell diffusion in the tumor
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border. When surface diffusion occurs to minimize the sur-
face area the corresponding term in the equation is [9]

Fs= —KABLH, (3)

where Ay is the Beltrami-Laplace operator
1 -
Apr=0,(Vgg"d,), (4)
Vg

g;j is the metric tensor and g is its determinant, d;=d/ ds' is a
covariant derivative, and H=7#-Ag, 7 is the mean curvature.
Summation over repeated indices is always assumed
throughout this work. Finally, the unitary normal vector is
given by Ai=g™29,r X --- X g, . In the case of the (1+1)-
dimensional Monge form (or what is the same, the param-
etrization corresponding to a planar substrate) we have 7
=(x,h(x)), the unitary normal vector takes this times the
form

1
fi: =(—

\3"1 + ((gxh)z axh71)7 (5)

where the metric tensor is given by (note that for this par-
ticular case the metric tensor is a scalar) g=1+(d,4)>. Thus,
the resulting mean curvature is

ah

R

which constitutes an expression far more complex than that
of the Mullins-Herring equation. However, we can linearize
this expression about the derivatives of 4 to get FS=—Kr9ih,
recovering the familiar drift of the MBE equation. This is the
so-called small gradient expansion, and it is valid if sharp
changes in the interface are absent [9]. The other contribu-
tion to the dynamics comes from particle input ['p=7-(F),
where F is the flux of cells generated at the interface. If we
assume that cell generation is an isotropic process, we find
(F)=F#, which implies that I',=F. However, the input of
new cells F is a random process, giving rise to a stochastic
contribution to the dynamics under the form of a noise 7
=i-®, where ®=F—(F). In summary, this implies that the
stochastic force fulfills ®=7» and (7)=0. Rearranging all

the terms, we recover the one-dimensional Mullins-Herring
equation for MBE growth

1ot = — K(hlox*) + F + n(x,1), (8)

[1+(d,h)*]" ’

H=—""5=5. 6
[T+ 0T ©
The corresponding contribution to the drift reads
|
K3[— 1+ 5(0,h)*)(%h)> = 10[a.h + (8,h)*1Phdh + [1 + (8,h)* 1 h -

where the noise, 7(x,f), has been assumed to be Gaus-
sian with a correlation given by (7(x,)n(x’,t"))
=D8(x—x")8(t—1"). The drift of this equation comes origi-
nally from Eq. (3), which expresses the “diffusion of the
mean curvature” of the surface. This also corresponds to a
homogenization of the pressure; let us show this fact as fol-
lows. Normal cells adjacent to the tumor exert force against
newborn tumoral cells. Concavities are surrounded by a
higher number of normal cells than convexities, and thus feel
more pressure. Tumoral cells move along the tumor edge
driven by surface forces; the effect of a diffusion is caused
by the redistribution of tumoral cells from convexities to
concavities (this fact will be shown explicitly below by
means of linear stability analysis). The equilibrium distribu-
tion corresponds to the spherically symmetric form, which
presumably implies the homogenization of the pressure all
along the tumor edge; this same form implies the minimiza-
tion of the mean curvature of the surface. The specific form
of the quartic derivative in this equation has been deduced
phenomenologically [3,4].

Now that we have identified the physical mechanisms that
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have led us to Eq. (8), we are in position to derive SPDEs
describing the same physics but with geometrical properties
compatible with those of a tumor. For the case of a (1+1)-
dimensional circular model in polar coordinates we have r
=(r(6)cos(6),r(H)sin(h)), the unitary normal vector reads

) 1 .
n= \/;’2+—/W(_ rsin(6),r cos(4)), ©)

the corresponding metric tensor is given this time by g=r>
+(dyr)%, and the mean curvature is

2+ 2(070’")2 - rd%,r

[P+ (0 T 1o
We are now ready to derive the diffusive drift
K(&r &r
5t w

correspondingly linearized with respect to the different de-
rivatives of r(6). The term containing the second derivative
of r is irrelevant in the renormalization group sense, SO we
can ignore it to obtain

K &
FS=——4—r.
ot

The stochastic term comes from the force in the same way

(12)

as in the last case ®=77. The noise # is a Gaussian variable
with zero mean and a correlation given by
os—s')

(n(s,0)n(s' 1)) = na(s,ng(s, ) DP——=—8(t—1'). (13)
Vg

We now can write the SPDE for tumor growth in (1+1)
dimensions

ar  Kdr 1 »

= g O, (14)
where the noise 7(0,1) is Gaussian, with zero mean, and a
correlation given by (59(6,1) (0" ,t'))=D&(0—-0")8(t—1t"). As
indicated above, we have assumed that cell generation is
isotropic, which implies that D**=D &%/, It is important to
note that this time the noise is multiplicative, and that it must
be interpreted according to Itd, since all the deterministic
contributions to the drift have been already extracted [9].
Another desirable characteristic of this equation is that the
variable @ only varies in [0,27] at any time, which repre-
sents an advantage with respect to using a different coordi-
nate, as for instance the arc length. The arc length [a magni-
tude more similar to x in Eq. (8)] varies in an interval that
depends on time (because the tumor grows), which makes it
more difficult to study the scaling properties of the model.
We can determine the critical exponents by power counting.
The arc length of a circumference is /=r#6, and taking into
account that it scales as /—bl, we deduce that the angle
scales as 6—b'~*@. The other two variables scale as r
—b%r and t— b°r; direct substitution reveals that Eq. (14) is
in the MBE universality class. Of course, the range of valid-
ity of this equation assumes that the interface shows negli-

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 73, 020902(R) (2006)

gible overhangs in the radial direction compared with the
size of the tumor, a fact that has been observed experimen-
tally in many cases [3].

Now we deal with a nonlinear equation, in contrast to Eq.
(8), that cannot be solved simply by means of a Fourier
transformation. Instead we can employ different techniques
in order to get some insight into it. For a large enough tumor
we can approximate the first moment of the radius by the
solution of the mean-field version of Eq. (14), i.e., neglecting
the noise term. On the other hand, a precondition for formu-
lating a continuous equation as an adequate description of a
tumor is that it be composed of a sufficiently high number of
cells. Thus describing the tumor with a continuous equation
is of the same order of approximation of considering the
mean-field level for computing the first moment of the ra-
dius. The first step in the analysis is to note that the deter-
ministic version of Eq. (14) admits radially symmetric solu-
tions of the form r(60,r)=R(t)=Ft+R,, where R, is the
radially symmetric initial condition. It is easy to illustrate the
linear stability of this solution by substituting r(6,)=R(z)
+p(6,1) in Eq. (14) with D=0, where p is a small perturba-
tion. The resulting equation for p is

ap -K &p (15)
at  (Fr+Ry)* 96"
Since the function p is 2 periodic in the € variable we can
express it exactly in terms of a Fourier series

p(6.0)= > p,(n)e™’, (16)

n=—0

and by direct substitution in Eq. (15) we see that the Fourier
modes obey

dpn - Kn*
— =P, 17
dr ~ (Fi+Ry)*"" (17)
We can integrate this equation exactly to obtain
- Kn* 1 1 >
1) =p,(t - , (18
pull) = pul O)eXp< 3F [(R0 +F)° (Ry+ Ft)3] (18)

where

1 [ _
palto) = Z_J p(0,t5)e™"%d, (19)
™)

and thus we see that the perturbation decreases in time pro-
vided that > 1, [10]. It is also important to note that Eq. (18)
might be interpreted as the response of the tumor to an ex-
ternal perturbation. Stochastic generation of new cells drives
the tumor away from the radially symmetric form, while sur-
face diffusion tries to restore it; the redistribution of cell
density after radial symmetry breaking follows the law of
Eq. (13).

Our next step will be to derive the corresponding equation
for the growth of a (2+1)-dimensional interface. We can
parametrize the two-dimensional surface by means of
the vector 7r=(r(0, p)sin(H)cos(p),r(0, p)sin(H)sin(¢p),
r(6, ¢)cos(6)). Implying that the metric tensor is
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(r2 + (9gr)?

Agrd 4
v ) (20)
&0r8¢r

r* sin?(6) + (z?(/,r)2

The mean curvature can be derived from the metric tensor;
however, the expression is so cumbersome that it cannot be
handled with simplicity. Instead we can linearize this expres-
sion about the different derivatives of r to get

Jd gr
+
tan(6) o

+ (21)

Ty )
sin(6) /)
Collecting the results we see that for the (2+ 1)-dimension-
al model for spherical growth the SPDE reads

o _ 5(& 2 _dr ] ﬁ)
ot =T A\ 06 T sin2(0) P 9 B T sin*(6) 9

1
H==|-2r+
}"2< "

1
+ m 7(0,,1), (22)

where the noise 7(6,,t) is Gaussian, with zero mean,
and the correlation given by (7(0,¢,0)n(6,¢",1"))
=D&O-0")5(p— ') 5(t—1"), and again it must be interpreted
according to Ito. As happened with the (1+1) model, we get
the desirable characteristic that the variables 6 and ¢
€[0,27]. In this case we see again that there exists a radi-
ally symmetric solution for the deterministic version of Eq.
(22): (0, ¢,1)=R(t)=Ft+R,, where R, is the radially sym-
metric initial condition. We can analyze its linear stability by
substituting the solution r(6,®,1)=R(t)+p(0,¢,1) in Eq.
(22) with D=0, where p is a small perturbation 27 periodic
in both variables 6 and ¢, and thus can be represented in the
form of a Fourier series

0

p(0,4.0)= 2 p,u(r)em?ime. (23)

n,m=—%

The Fourier modes obey the ordinary differential equation

d -K 8 8
P _ 1 (n4 +-m’n*+ —m4)pn s (24)
di (Ft+Ry) 3 3 :

that can be integrated to yield
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(1) (1) (_ [ 1 : F :|
= €X -
Pn,m Pnm\lo)€XP (R0+Ft0)3 (Ry+ [)3

3F

8 8
X | n*+ —m*n® + —m*| |, (25)
3 3

where
1 2 (2 ) )
pn,m(tO) = _f f p(aa ¢7t0)e_ln0_lm¢d6d¢’ (26)
a7 ), Jo

implying the stability of the solution provided z>1, [11].
This is, as in the former case, the law that imposes density
redistribution after radial symmetry breaking due to the sto-
chastic generation of new cells.

In conclusion, we have derived the equations of growth of
the (1+1)- and (2+1)-dimensional tumor interfaces contain-
ing the physics of MBE in the appropriate geometry. These
equations provide us with a description of the tumor in a
coordinate system that is polar, and, since all the coordinates
are angles, we have the additional advantage that they vary
in intervals that are independent of time. They correctly pre-
dict the constant velocity growth regime found experimen-
tally during the initial phase of growth; a linear stability
analysis of radial solutions allowed us to quantitatively esti-
mate the law of density distribution of new generated cells.
However, latter stages of growth are characterized by certain
deceleration of the growth rate; this fact is not captured by
the present model, and it will be studied in the future. We
have assumed all along in this work that the tumor is com-
posed of a large enough number of cells so that the hydro-
dynamic description by means of continuous equations
makes sense. If we want to describe small tumors, a kinetic
approach to the problem becomes necessary, as for instance a
master equation formulation. Master equation descriptions of
growth models are already present in the literature [12], and
may be adapted for the present case of a tumor. Furthermore,
we can project the master equation for the cell population
into a SPDE by field theoretic arguments [13] in order to
recover a theoretical approach more similar to the one pre-
sented here. These and other questions will be the object of
future research.
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